

Empowering the Internet of Medical Things with AI: From Data to Autonomous Healthcare Systems

Introduzione

The Internet of Things (IoT) refers to a network of physical objects—sensors, wearable devices, machinery, and connected instruments—capable of collecting, transmitting, and exchanging data over the Internet. This interconnection transforms everyday objects into continuous sources of information, creating ecosystems that can communicate with each other and with central systems.

In healthcare, IoT is finding increasingly broad applications: from wearable devices that monitor vital signs in real time, to hospital sensors that track the location of equipment and patients, to telemedicine solutions that enable remote consultations and continuous follow-up. Applications of this kind are identified by the acronym **IoMT** (Internet of Medical Things).

The advantages are numerous:

- **Continuous patient monitoring**, even outside the hospital, with up-to-the-moment data.
- **Faster prevention and diagnosis**, thanks to timely analysis of signals and anomalies.
- **Operational efficiency**, reducing time and costs through smarter resource management.

When algorithms of Artificial Intelligence (AI) are combined with these device networks, the potential grows even further: AI can analyze large volumes of sensor data, recognize complex patterns, and generate real-time predictions or alerts, transforming IoT into a platform capable not only of gathering information but also of making more informed, predictive decisions.

These technologies are thus paving the way for healthcare that is increasingly personalized, proactive, and data-driven, improving both the patient experience and the work of healthcare professionals.

IoT in Healthcare

The adoption of the Internet of Things in healthcare is revolutionizing the collection and management of clinical data, making care more continuous and personalized. Some particularly relevant application areas include:

1. Wearable devices

Wearable sensors, chest straps, and smart patches can monitor parameters such as heart rate, blood pressure, oxygen levels, or physical activity. Data are sent in real time to physicians or cloud platforms, allowing constant oversight of chronic or at-risk patients and enabling prompt intervention in case of anomalies.

2. Connected hospitals

Sensors distributed throughout wards and operating rooms track the location of equipment, medications, and even patients, optimizing resource use and improving safety. Remote monitoring systems make it possible to observe inpatients' vital signs without interruption, reducing staff workload.

3. Telemedicine and home care

IoT devices for measuring different medical parameters can be installed in patients' homes. The data are automatically shared with healthcare professionals, facilitating remote visits, reducing hospitalizations, and enabling proactive follow-up.

4. Emergency and logistics management

Connected ambulances and temperature-sensitive drug tracking systems ensure that critical supplies are kept in optimal conditions and that emergency personnel have immediate access to vital information.

Applications of this kind offer several benefits, such as:

- Greater **continuity of care**, even outside the hospital.
- **Reduced operating costs** and waste through smarter resource management.
- **Increased accuracy and timeliness** in diagnosis and treatment.

Thus, IoT does more than collect data: it creates a dynamic network that makes healthcare more responsive, efficient, and patient-centered.

Comprehensive and Flexible IoMT Infrastructures

The starting point for developing successful systems is the construction of complex, secure IoT infrastructures capable of adapting to diverse clinical scenarios.

Our expertise in hardware and firmware development for embedded medical devices enables us to create complete end-to-end infrastructures, starting with the sensors in contact with patients and extending all the way to the apps used by medical staff. These infrastructures include:

1. Field nodes

These are sensors and, when needed, actuators (for example infusion pumps or alarms) that collect data and, if required, take action. They may be wristbands that measure heart rate, environmental sensors that monitor medication temperatures, or wearable devices that track blood glucose.

2. The backend: the digital core

Here servers, databases, and cloud services come into play. This is the part that receives and stores data, processes it, and makes it available.

In fact, the collected data reach platforms that organize and analyze them in real time, generating any necessary alerts. Databases and storage systems preserve historical information for deeper studies. Finally, through APIs and microservices, this information can integrate with existing clinical systems such as patients' electronic health records.

3. Applications for physicians and patients

Completing the infrastructure are the user-facing interfaces: hospital dashboards, smartphone apps, and web portals. Through these, physicians can monitor charts, trends, and alarm notifications in real time, while patients and caregivers can receive reminders, review their own metrics, and share data with specialists.

The data pathway is continuous: sensors capture parameters, the gateway securely transmits them to the cloud, servers process them, and the applications present them as charts, notifications, or commands to actuators.

This modular architecture makes it easy to scale from a few devices to thousands while maintaining security and reliability.

From Data Collection to Model Training

The infrastructures we build are designed to become high-value dataset factories, essential for training machine learning and deep learning models.

From sensor to dataset

Each sensor generates a large volume of information: physiological signals, environmental data, and device usage logs. Properly processed, these data streams flow into structured archives that can feed predictive and advanced analytics algorithms.

Tailored solutions for every project

Our company designs the infrastructure to fit the specific context and goals, adopting different training strategies:

- **Supervised**, when labeled data are available for tasks such as image or signal classification and segmentation.
- **Unsupervised**, to uncover hidden patterns or cluster similar behaviors.
- **Static**, with datasets defined from the outset.
- **Incremental**, useful when data grow over time and the model must be updated continuously.

Models for specific tasks

Through these techniques, we develop models capable of addressing various activities, such as:

- **Processing and classifying biomedical signals** (e.g., ECG, EEG).
- **Analyzing and segmenting** medical images to support faster diagnoses.
- **Forecasting time series**, for example to anticipate trends in vital parameters or hospital resource consumption.

In this way, the IoT ecosystem is not just a monitoring system but becomes the starting point for creating predictive and decision-making intelligence, offering customized solutions for clinics, laboratories, and medical devices.

Integration of AI into IoT Infrastructures

Machine learning and deep learning algorithms, trained on datasets generated by the IoT infrastructure, can:

- **Recognize complex patterns** in vital signs, detecting anomalies invisible to the human eye.
- **Predict the evolution of clinical parameters**, helping anticipate crises or flare-ups.
- **Process images and signals to support faster**, more accurate diagnoses.

Thanks to the possibility of supervised or unsupervised training, as well as static or incremental updates, these models can be adapted to a wide range of scenarios—from automatic classification of radiological images to forecasting trends in time series such as blood glucose or heart rate.

Tangible benefits for patients and healthcare professionals

The combination of IoT and AI delivers immediately perceptible results:

- **Personalized care:** predictive models enable tailored therapies and dynamic care plans based on the patient's real-time data.
- **Timely interventions:** automatic notifications and alerts allow doctors to respond before a problem becomes critical.
- **Operational efficiency:** continuous analysis helps optimize resources, staffing, and supplies, reducing costs and waste.
- **Data-driven decisions:** professionals can rely on objective, up-to-date indicators, reducing uncertainty.

A competitive edge for custom projects

Our company integrates these elements into turnkey solutions: from customized IoT infrastructure to the creation and management of AI models, and the interfaces for doctors and patients. The combination of expertise in sensing, cloud, and data science enables us to develop platforms that not only collect information but also learn and evolve, transforming healthcare into a predictive and proactive process.

Challenges and Ethical Considerations: Innovating Safely and in Compliance

Bringing the Internet of Things and Artificial Intelligence into healthcare means more than designing connected devices and intelligent algorithms. It primarily involves handling extremely sensitive data, integrating technologies that directly affect people's health, and ensuring that every component is secure and reliable.

For this reason, developing IoT and AI projects in the medical field is a complex process that demands constant attention to security, privacy, and regulatory compliance.

Protecting patient data is critical. Clinical information must be collected and stored with strict encryption, minimization, and traceability standards, in accordance with the **General Data Protection Regulation (GDPR)**. But privacy is only part of the challenge: networks of sensors and connected devices can become targets of cyberattacks; therefore, the entire infrastructure must be designed to withstand and respond to incidents, adopting a "security by design" approach that meets the requirements of the **Cyber Resilience Act (CRA)**.

Artificial Intelligence also requires clear rules. Models that support clinical decisions must be transparent, verifiable, and free of bias—qualities the **European Artificial Intelligence Act (AI Act)** seeks to guarantee, especially for high-risk applications such as healthcare. Added to this are the provisions of the **Medical Device Regulation (MDR)**, essential when software or an IoT system qualifies as a medical device, which impose precise validation and certification procedures.

Our company integrates these requirements from the earliest design stages. We develop solutions that combine cyber-resilience, GDPR compliance, and the latest European regulations, ensuring that every AI model is documented, traceable, and continuously monitored. This way, our clients can rely on platforms ready for certification and truly secure, without facing lengthy reviews or retroactive adjustments.

Innovating in healthcare therefore means finding a balance between technological creativity and regulatory adherence. It is work that demands multidisciplinary expertise and continuous vigilance—an effort our company undertakes to deliver IoT and AI solutions that are not only cutting-edge, but also **reliable, compliant, and future-ready**.

Conclusions

The integration of the Internet of Medical Things and Artificial Intelligence is emerging as one of the most solid pillars of healthcare innovation. Intelligent sensors, scalable infrastructures, and predictive models transform clinical data into immediately usable knowledge, enhancing diagnosis, treatment, and resource management.

For healthcare facilities, pharmaceutical companies, and research centers, this means relying on secure platforms that comply with European regulations and can evolve over time, paving the way for medicine that is increasingly preventive, personalized, and sustainable.

The journey requires multidisciplinary expertise, constant attention to data protection, and a “security by design” approach, but the benefits are tangible: more efficient processes, evidence-based decisions, and a care experience that truly puts the patient at the center.

Teoresi MedTech is committed to continuing the development of IoMT and AI solutions that not only meet the highest standards of quality and safety but also anticipate future challenges, contributing to intelligent, predictive healthcare that is ready to meet the needs of tomorrow.

Leading Advanced Medical Solutions